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Abstract. We present an algorithm for finding a global minimum of a multimodal, multivariate
function whose evaluation is very expensive, affected by noise and whose derivatives are not available.
The proposed algorithm is a new version of the well known Price’s algorithm and its distinguishing
feature is that it tries to employ as much as possible the information about the objective function
obtained at previous iterates. The algorithm has been tested on a large set of standard test problems
and it has shown a satisfactory computational behaviour. The proposed algorithm has been used to
solve efficiently some difficult optimization problems deriving from the study of eclipsing binary star
light curves.
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1. Introduction

We consider the problem of finding a global solution of the unconstrained opti-
mization problem:

min f(x)
x 2 R

n (P )

where f : Rn ! R is a continuous function.
In the literature many algorithms have been proposed to solve unconstrained

global optimization problems, see for example [1]–[10]. However, in this paper,
we are interested to tackle the particular difficult case of Problem (P ) in which:

(i) the evaluation of the objective function is very expensive;
(ii) the values of the objective function can be affected by the presence of noise;
(iii) the derivatives of the objective function are not available.

This class of global optimization problems is particularly important in industrial
and scientific applications. In fact, in these applications, we often have to minimize
complex functions whose values are determined by measurements made on some
complex physical system or by a simulation procedure. In these cases the values
of the objective function can be corrupted either by deterministic error (due to
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modelling errors, truncation errors or discretization errors) or by stochastic noise
(due to inaccurate measurements or rounding error). Moreover, even in the noiseless
case, it can be very difficult or impossible to work out the analytical expressions
of the partial derivatives of the objective function.

In fact, the motivation of the present work was to solve the global optimization
problem deriving from the study of eclipsing binary stars based on light observed
curves. The problem of estimating the parameters of the Wilson–Devinney model
that describes the behavior of a system of eclipsing binary stars falls in the class
described by Problem (P ) with features (i), (ii) and (iii), with the additional
difficulty that the dimension n is such that even a local minimization without
derivatives can be considered a very difficult task.

In [11] a detailed analysis on global optimization methods is reported in order
to single out the method which is the most suitable to tackle the particular global
optimization problem mentioned before. According to the classification given in
[5], the global minimization methods have been divided into three classes: Methods
with Guaranteed Accuracy based on covering strategies, Direct Methods based only
on local information, Indirect Methods in which the local information is used for
building a global model of the level sets of the objective function.

The conclusions of the analysis performed in [11] can be synthesized as follows.
Methods with Guaranteed Accuracy are not suitable due to the fact that they are
based on estimation of the Lipschitz constant of the objective function or of its
gradient and to the fact that their applicability needs that the objective function has
limited derivatives; moreover, usually, these methods are efficient only when the
function evaluations are not expensive. Indirect Methods have been considered not
suitable because the techniques for approximating the level sets of the objective
function can lead to large errors, owing to the complexity of the problem to be
solved, the correlations among the parameters and the presence of noise. Therefore
the selection of the method has been restricted to the second class.

Direct Methods have been, in turn, subdivided into Random Search Methods,
Clustering Methods and Generalized Descent Methods. A common feature of these
methods is that, in solving the global optimization problem, they tackle, at the same
time, two distinct problems:

– the problem of examining all the region of interest in order to locate the
subregions “more promising” to contain a global minimum point x� (the
global search problem);

– the problem of determining the global minimum x� by using a local strategy
as soon as a “sufficiently small” neighborhood of this point has been located
(the local search problem).

The peculiarities (i), (ii) and (iii) of the considered global minimization problem
restrict very much the choices of the strategies that can be used in the local search.
In dealing with local minimization problems which present the difficulties (i), (ii)
and (iii), the usually recommended method (see, e.g., [12]) and certainly the most
used one (cf. [13]) is the simplex method of Nelder & Mead [14]. This suggests
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that, also for solving global minimization problems with the same difficulties, it
is convenient a method which, in the local search, draws its inspiration from the
strategy of the simplex method. On the other hand, in [11], it has been also pointed
out that, in the global search, a clustering strategy has the practical advantage of
providing enough information on the features of the problem during the solution
process. In fact, the output of the process, showing the evolutions of the clusters,
contains a lot of supplementary information that it is very difficult to formalize,
but of great importance in the solution of a real problem.

On the basis of the preceding considerations, in [11], the method of Price
[15] has been recommended for solving the global optimization problem of the
eclipsing binary stars. Then, a computer code for the Wilson–Devinney model
has been implemented [16], where the underlying global optimization problem of
parameter estimation is tackled by the Price’s algorithm [15]. The results obtained
by using the code are reported in [17] and [18]. The numerical experiences seem
to indicate that the algorithm proposed by Price is efficient enough in the global
search while it is not able to perform a sufficient fast local minimization to find
the global minimizer when the algorithm has produced an estimate xk “sufficiently
good”.

In this paper we describe a new version of the Price’s algorithm in which the
efficiency of the local search is improved without any significant increase in the
number of function evaluations. To this aim, we have drawn our inspiration from
the different behaviours of the local minimization algorithms. In fact, in the field of
local minimization methods, when we pass from nonderivative methods to gradient-
related methods, or from gradient-related methods to Newton-type methods, we
get a significant improvement in the efficiency of the minimization process. This
clearly points out that the more a method conveys information on the optimization
problem (for example by using the information derived from the first or second order
derivatives of the objective function) the more the method is effective in locating
a local minimum point. Since we are interested to solve minimization problems
in which no derivatives are available, the only way to improve the information on
the optimization problem is to use the values of the objective function evaluated
at the previous iterations. The preceding considerations lead us to define a new
version of the Price’s algorithm which, unlike the basic version, tries to exploit the
information derived from the previous function evaluations in such a way as to
improve the efficiency of the algorithm in the local search, without deteriorating
the behaviour of the basic version in the global search.

In order to have an evidence of the efficiency of the improved version of the
Price’s algorithm we have compared it with the basic version on a set of standard test
problems. The numerical results obtained on these “easy” test problems convinced
us that new algorithm is quite more efficient than the basic one. Therefore we
have applied the improved algorithm for solving the “difficult” global optimization
problem of estimating the parameters of the model of eclipsing binary stars and, in
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this way, we obtained a very significant reduction of the burdensome computing
effort needed before by the basic Price’s algorithm.

2. The Basic Price’s Algorithm

In theory, any unconstrained global minimization algorithm should locate a point
x� such that

f(x�) � f(x); for all x 2 Rn:

However, for practical purposes, it is necessary to confine the search of the global
minimum x� within a prescribed bounded domain. Therefore, as usual in the field
of unconstrained global optimization, we assume to know a compact set D which
contains in its interior a global minimum point x� of f(x).

On the basis of the preceding considerations, the problem to solve becomes, in
practice, to find an unconstrained global minimum of the following problem:

min f(x)
x 2 D

( ~P )

where D is a given compact set.
In [15] Price has developed an algorithm suitable for tackling the global opti-

mization Problem ( ~P ), in the case that the derivatives of the objective function are
not available. The algorithm of Price is described by the following steps.

THE PRICE’S ALGORITHM

Data. A positive integer m such that m � n+ 1.

Step 0. Set k = 0; determine the initial set

Sk = fxk1 ; . . . ; xkmg;

where the points xki ; i = 1; . . . ;m are chosen at random over D; evaluate
f at each point xki ; i = 1; . . . ;m.

Step 1. Determine the points xkmax; x
k
min and the values fkmax; f

k
min such that:

fkmax = f(xkmax) = max
x2Sk

f(x)

fkmin = f(xkmin) = min
x2Sk

f(x):

If the stopping criterion is satisfied, then stop.

Step 2. Choose at random n + 1 points xki0 ; x
k
i1
; . . . ; xkin over Sk. Determine the

centroid ck of the n points xki1 ; . . . ; xkin where

ck =
1
n

nX
j=1

xkij : (2.1)
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Determine the trial point ~xk given by

~xk = ck � (xki0 � ck): (2.2)

If ~xk 62 D go to Step 2; otherwise compute f(~xk).

Step 3. If f(~xk) � fkmax then take

Sk+1 = Sk:

Set k = k + 1 and go to Step 2.

Step 4. If f(~xk) < f(xkmax) then take

Sk+1 = Sk [ f~xkg � fxkmaxg

Set k = k + 1 and go to Step 1.

The stopping criterion used at Step 1 is fkmax� f
k
min < �, where � is a suitable small

value; � = 10�6 has been used in the numerical experiments reported here. As
concerns the value of m, we have used m = 25n, as suggested by Price in [15].

The numerical results show that, as we said in the introduction, the Price’s
algorithm is efficient enough in exploring uniformly the region of interest and in
identifying a neighbourhood of a global minimum point. However, it becomes slow
in determining exactly the global minimum point starting from this neighbourhood.

3. The Improved Price’s Algorithm

In order to overcome the inefficiency of the Price’s algorithm we propose some
improvements and extensions. More in particular, we propose a new algorithm
that tries to gather the information about the objective function making better use
of the values of the objective function already evaluated than in the basic Price’s
algorithm. This is done by means of the following three simple heuristic tools:

– the use of a weighted centroid;
– the use of a weighted reflection;
– the use of a quadratic model of the objective function.

3.1. THE USE OF A WEIGHTED CENTROID

Instead of the centroid ck given by (2.1), the new algorithm makes use of the
weighted centroid ckw defined by:

ckw =
nX

j=1

wk
j x

k
ij
; (3.3)
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where

wk
j =

�kjPn
j=1 �

k
j

; (3.4)

�kj =
1

f(xkij )� fkmin + �k
; (3.5)

fkmin = min
x2Sk

f(x): (3.6)

The sequence f�kg is any sequence of positive numbers such that �k � f(xkij )�

fkmin; j = 1; . . . ; n, at the initial iterations and such that �k ! 0 for k ! 1. A
suitable choice is

�k = !
(fkmax � fkmin)

2

f0
max � f 0

min
; (3.7)

where ! is a positive constant sufficiently large (for instance ! = 103), and
fkmax = f(xkmax). This choice was implemented in our numerical experiments
reported in Section 4.

At the initial iterations the weighted centroid is practically the same as the
centroid used in the Price’s algorithm; in fact for such iterations we have wk

j '
1
n .

This guarantees that the new algorithm inherits the good behaviour of the Price’s
algorithm in the global search phase. When the number of iterations is sufficiently
large and, hence, the values of �k are sufficiently small, the coefficientswk

j weight
more the points xkij whose function values are close to fkmin. The motivation of this
choice is the following: when the number of iterations grows the points belonging to
the set Sk are better approximations of local minimum points, so that the weighted
centroid, given by (3.3), allows us to explore a region which is more promising in
order to locate the global minimum point.

3.2. THE USE OF A WEIGHTED REFLECTION

Instead of the trial point ~xk given by (2.2), the new algorithm gives a point ~xk by
using the following weighted reflection. Let

fkw =
nX

j=1

wk
j f(x

k
ij
); (3.8)

where wk
j is given by (3.4). Then we take

~xk =

8><
>:
ckw � �k(xki0 � ckw); if fkw � f(xki0);

xki0 � �k(ckw � xki0); if fkw > f(xki0);
(3.9)
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where

�k =

8>>>>><
>>>>>:

1�
f(xki0)� fkw

fkmax � fkmin +  k
; if fkw � f(xki0);

1�
fkw � f(xki0)

fkmax � fkmin +  k
; if fkw > f(xki0);

(3.10)

and the sequence f kg is any sequence of positive numbers such that  k �

fkmax� f
k
min, at the initial iterations and such that  k ! 0 for k !1; in particular

in our numerical experience we chose for f kg the same sequence f�kg given by
means of (3.7).

Again, in producing the new point ~xk we exploit as much as possible the
values of the objective function already computed. In particular we try also to
evaluate the “goodness” of the centroid ckw. This should be done by computing the
objective function in ckw, but in order to avoid this additional function evaluation
we estimate this value by fkw, given by (3.8), which is a weighted mean of the
values f(xkij ); j = 1; . . . ;m, where the weights are the same used in the definition

of the centroid ckw. By comparing the value fkw with the function value f(xki0) we
consider the direction dk = ckw � xki0 a “descent” direction if fkw � f(xki0) and, in
this case, the algorithm gives a new trial point along this direction. Otherwise, if
fkw > f(xki0), a new point is taken along the opposite direction dk = xki0 � ckw.

As regards the choice of steplength�k along the direction dk, this is determined
by formula (3.10). This formula, using the sequence f kg, yields values �k � 1
at the initial iterations, so that for such iterations we nearly perform a simple
reflection as it is done in the Price’s algorithm. When the number of iterations
increases, the same formula yields values �k which are strictly smaller than one
if the variation jfkw � f(xki0)j is sufficiently large with respect to the difference
fkmax�f

k
min. In this way, when the point around which the reflection is performed can

be considered a good estimation of the minimum point of the objective function, the
new point produced by (3.8–3.10) is closer to the point around which the reflection
is performed than the point that would be produced by the Price’s algorithm.

3.3. THE USE OF A QUADRATIC MODEL OF THE OBJECTIVE FUNCTION

This tool can be put in action if the value chosen for the parameter m is such that
m � 2n + 1. In this case it is possible to build a quadratic approximation of the
objective function given by:

q(x) =
1
2
x0Qx+ c0x+ d;

where Q is an n� n diagonal matrix, such that q(x) interpolates the values of the
objective function computed at 2n+ 1 different points.
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Let m � 2n+ 1. At each iteration we check if

f(~xk) < fkmin: (3.11)

In this case we select a subset Smin of 2n+ 1 points of the set Sk [ f~xkg� fxkmaxg

corresponding to the smallest values of the objective function. Then we determine
Q; c and d by imposing that the quadratic function q(x) interpolates these function
values. If the diagonal matrix Q results to be positive definite we evaluate the
minimizer ~xkq = �Q�1c and we check the condition

f(~xkq) < min
x2Smin

f(x): (3.12)

If condition (3.12) holds the point ~xkq will substitute in the new set Sk+1 the point
~xkmax that gives the maximum of f in the set Smin, that is the point such that

f(~xkmax) = max
x2Smin

f(x): (3.13)

Otherwise we assume Sk+1 = Sk [ f~xkg � fxkmaxg.

3.4. THE IMPROVED ALGORITHM

On the basis of the points described above we can define the new algorithm.

THE IMPROVED ALGORITHM

Data. A positive integer m such that m � 2n+ 1.

Step 0. Set k = 0; determine the initial set

Sk = fxk1 ; . . . ; xkmg;

where the points xki ; i = 1; . . . ;m are chosen at random over D; evaluate
f at each point xki ; i = 1; . . . ;m.

Step 1. Determine the points xkmax; x
k
min and the values fkmax; f

k
min such that:

fkmax = f(xkmax) = max
x2Sk

f(x)

fkmin = f(xkmin) = min
x2Sk

f(x):

If the stopping criterion is satisfied, then stop.

Step 2. Choose at random n + 1 points xki0 ; x
k
i1
; . . . ; xkin over Sk. Determine the

centroid ckw of the n points xki1 ; . . . ; xkin:

ckw =
nX

j=1

wk
j x

k
ij
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where

wk
j =

�kjPn
j=1 �

k
j

and �kj are given by (3.5) and (3.7).

Step 3. Determine the trial point ~xk by performing a weighted reflection: let

fkw =
nX

j=1

wk
j f(x

k
ij
);

then take

~xk =

8><
>:
ckw � �k(xki0 � ckw); if fkw � f(xki0);

xki0 � �
k(ckw � xki0); if fkw > f(xki0);

where �k is given by (3.10).

If ~xk 62 D go to Step 2; otherwise compute f(~xk).

Step 4. If f(~xk) � fkmax then take

Sk+1 = Sk:

Set k = k + 1 and go to Step 2.

Step 5. If fkmin � f(~xk) < fkmax then take

Sk+1 = Sk [ f~xkg � fxkmaxg;

set k = k + 1 and go to Step 1.

Step 6. If f(~xk) < fkmin let

~S = Sk [ f~xkg � fxkmaxg

and select the subset Smin of 2n + 1 points in ~S corresponding to the
smallest values of f .

Determine the diagonal matrix Q, the vector c and the scalar d such that

f(xi) =
1
2
x0iQxi + c0xi + d; xi 2 Smin; i = 1; . . . ; 2n+ 1:

Step 7. If the diagonal entries of Q are not all positive, then take

Sk+1 = ~S;

set k = k + 1 and go to Step 1.
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Step 8. If Q is positive definite let

~xkq = �Q�1
c :

If ~xkq 62 D or f(~xkq) � f(~xk), then take

Sk+1 = ~S;

else take

Sk+1 = ~S [ f~xkqg � f~x
k
maxg;

where ~xkmax is defined by (3.13).

Set k = k + 1 and go to Step 1.

We note that, in the improved algorithm, the number of function evaluations
required to determine a candidate to be the current estimate of the global optimizer
is the same as in the basic algorithm. An additional objective function evaluation
is performed only at Step 8 and, hence, only in a subset of the cases in which the
current estimate is updated; so that we may expect that the number of additional
function evaluations is small with respect to the total number.

4. Remarks on the Convergence of the Algorithm

Price’s algorithm is called a controlled random search method because it follows
a strategy which is a compromise between a pure random search strategy and a
clustering strategy. As described in Section 2, an essential element of the Price’s
algorithm is the set Sk: initially, this set is constituted by m points chosen at
random over D and then it collects the best points produced in the procedure. At
each iteration a new trial point is produced along a direction which is randomly
chosen over a finite number of vectors determined by the points belonging to Sk.
The rationale behind the approach of the Price’s algorithm is that, as the number
of iterations increases, the set Sk should cluster round the global minimum points
and the directions used should become more effective than directions chosen at
random on Rn.

Since the number of points chosen at random over D is given by m and the
directions used by the algorithm are not chosen at random over all Rn, it is not
possible to state any convergence property of the Price’s algorithm. In practice, the
possibility of locating a global minimum point rests on the fact that the number of
points randomly chosen at the initial step is not small and on the fact that global
minimum points do not have narrow region of attraction. From this point of view,
it appears clearly that the Price’s algorithm, as described in Section 2, is a heuristic.

The modified version of the Price’s algorithm proposed in this paper tries, as we
said before, to improve the local search without affecting significantly the global



NEW VERSION OF PRICE’S ALGORITHM 175

search, therefore it is still a heuristic. In this respect, we refer to section 7.2 of [5]
where it is reported a thorough discussion on ”why heuristics are necessary” and
on how many are “heuristics elements in global optimization”.

In any case, the basic and the improved algorithms could be easily modified in
order to produce a sequence of points globally convergent in probability towards
a global minimum point. In fact, it is sufficient to continue, once in a while, to
evaluate points chosen at random over D (see, e.g., [3]). In this way it is possible
to guarantee the global convergence of the algorithm even if the values of the
objective function are affected by the presence of noise. The only requirement is
that the noise is distributed with zero mean ([3]).

An example of such a modification is to replace Step 3 of the basic algorithm
or Step 4 of the improved algorithm with the following new step:

Step N If f(~xk) � fkmax then choose a point x̂ at random over D:

if f(x̂) < fkmax then take

Sk+1 = Sk [ fx̂g � fxkmaxg;

set k = k + 1 and go to Step 1;

otherwise (if f(x̂) � fkmax) take

Sk+1 = Sk;

set k = k + 1 and go to Step 2.

This new step, needed to guarantee convergence properties, requires an addi-
tional function evaluation at a point determined without using any information on
the objective function. This task could be too expensive when the basic algorithm
is used for solving a global minimization problem with feature (i). Since the algo-
rithm proposed in this section should save function evaluations in the local search,
it appears to be more viable to use Step N in the improved algorithm.

However, in this work we have implemented the modified version of the Price’s
algorithm without using StepN . This is due to the fact that our original aim was to
tackle the global minimization problem of estimating the parameters in the Wilson–
Devinney model. Since the previous numerical experiences (see, e.g., [17], [18]),
performed on such problem, show that the Price’s algorithm is able to cluster round
the global minimum points and that the convergence is achieved even if after a
very large number of function evaluations, in practice, the introduction of Step
N appeared to be not necessary to enforce the global convergence in probability
of the Price’s algorithm and of its modifications, at least for the particular global
optimization problem of main concern here.
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Table I.

Functions n Basic Algorithm Improved Algorithm �nf (%)
nf np fmin nf np fmin

1 2 5554 3881 .19E � 3 3837 1428 .65E � 8 30.90
2 3 5159 3611 .19E � 2 1648 634 .19E � 2 68.05
3 3 5266 3239 .66E � 7 3150 1632 .22E � 7 40.18
4 4 5649 4118 .17E � 8 3500 2318 .47E � 9 38.04
5 4 16477 13004 .41E � 7 5089 2417 .32E � 7 69.11
6 2 1573 839 �:10E + 1 722 229 �:10E + 1 54.10
7 2 2181 1244 :21E � 7 903 261 :58E � 11 58.59
” 4 8088 5066 :11E � 6 2374 688 :77E � 10 70.64
” 6 16017 10100 :14E � 6 3921 1092 :38E � 9 75.51
” 8 26718 16992 :26E � 6 5427 1440 :42E � 9 79.68
” 10 36838 23004 :36E � 6 7081 1815 :18E � 9 80.77
8 2 1890 1079 :23E � 7 800 263 :22E � 8 57.67
” 4 7172 4461 :59E � 7 2195 642 :22E � 8 69.39
” 6 14375 8939 :23E � 6 3790 1082 :22E � 9 71.56
” 8 23583 14535 :26E � 6 5191 1331 :17E � 8 77.98
” 10 32402 19649 :35E � 6 7037 1826 :97E � 10 78.54

9(m = 5) 4 7567 4187 �10:05 5403 2841 �10:05 28.59
9(m = 7) 4 7492 4114 �10:06 5386 2837 �10:06 28.10

9(m = 10) 4 7526 4157 �10:07 5862 3235 �10:07 22.11
10 3 2936 1533 �3:86 1014 250 �3:86 62.05

” 6 14071 8946 �3:32 4154 1432 �3:32 70.47
11 2 2148 1202 3.00 936 279 3.00 56.42
12 2 1239 659 �1:00 586 162 �1:00 52.70

” 4 4675 2580 �1:00 1655 754 �1:00 64.59
13 2 1783 1036 �:20 723 225 �:20 59.45

” 4 6720 4164 �:40 2327 826 �:40 65.37
14 2 1745 915 �95:28 710 164 �95:28 59.31

15(m = 4) 1 530 299 15.28 236 89 15.28 55.47
15(m = 10) 1 523 285 44.95 203 61 44.95 61.18
15(m = 25) 1 790 420 261.81 332 113 261.78 57.97

5. Numerical Results

The improved algorithm has been experimented on a large set of test functions,
taken from the literature, with n ranging from 2 to 10. In all casesD is a hypercube.
We report in the Appendix the description of all test functions and the corresponding
hypercubes.

For all test functions a comparison has been made with the basic Price’s algo-
rithm. Both algorithms have been stopped whenever

fkmax � fkmin � 10�6:
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In table 1 we report the results of the comparison between the basic and the
improved Price’s algorithm. In the table:

– nf is the number of function evaluations;
– np is the number of function evaluations at the trial points ~xk that have not

given a value f(~xk) smaller than fkmax, and hence that have been discarded;
– fmin is the value of fkmin when the stop occurs;
– �nf is the ratio between the difference of the values ofnf in the two algorithms

and the largest value of nf .
From Table I we point out that the new algorithm performs better with respect

to all test problems. In particular both nf and np are smaller; in 14 cases fmin is
smaller and in the other cases fmin is equal to the one obtained by Price’s algorithm.
Therefore we have that the new algorithm requires a significantly smaller number
of function evaluations and, in many cases, yields a smaller value of the objective
function.

From the analysis of the behaviour of the new algorithm, we remark that the use
of a weighted centroid and of a weighted reflection is most effective in reducing
the number of function evaluations, while the use of a quadratic model of the
objective function is effective mainly in achieving a better accuracy of the estimated
minimum value fmin.

6. Application to the Parameter Extraction of Close Eclipsing Binary Stars

As we already said, the new algorithm has been motivated by the problem of
determining the principal geometrical and physical parameters characterizing a
binary star system, from photometric observations at different wavelengths of their
eclipses. The determination of these parameters is of main interest in astrophysics,
since the behaviour of binary systems is analysed in order to validate the theories
on stellar evolution.

The physical model of the light curve generation in a binary system has been
developed by Wilson and Devinney in 1971 [19], and it is represented by a rather
complicated function of 18 variables that characterize the system. Among these, 3
variables are data of the model, and 7 are dependent on data and on other variables;
the remaining 8 variables are independent, and have to be determined by comparing
the light curves generated by the model with the observed light curves, at different
wavelengths.

Let us denote by l0ij the i� th observation on the light curve at the wavelength
j, and by lcij(x) the light intensity predicted by the model, where x denotes the
vector of independent variables. Then the parameter extraction problem consists
in determining a global minimizer of the weighted square error function:

S(x) =
rX

j=1

1
sj

sjX
i=1

pij(l
0
ij � lcij(x))

2
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Table II.

Binary system n Basic Alg. Improved Alg.
nf fmin nf fmin

AT CAM (q > 1) 8 37944 .0001359 10897 .0001358
AT CAM (q < 1) 8 26100 .0001351 12432 .0001350

V677 8 36900 .0027367 15544 .0027365
A0 CAM 8 32400 .002962 10980 .002962

where r is the number of light curves, sj is the number of observations on the
j � th light curve, and pij is a weight associated with the error.

The features of S(x) are that:
(i) its evaluation is very expensive;

(ii) the values of the objective function are affected by measurement noise;
(iii) its derivatives are not available.

In particular, as regards the first point, we notice that the evaluation of the
function S(x) requires about 3000 of CPU time of an IBM RISC System 6000/520.
Thus the reduction in the number of function evaluations is a crucial step to solve
efficiently the problem.

In Table II we report the numerical results obtained by the two algorithms on
the data of four binary star systems.

The results reported in Table II show that the improved version of Price’s
algorithm allows us to decrease drastically the number of function evaluations and,
in this way allows us reduce the computation time.

As an example, in the case of the binary star system AT CAM (q > 1), the
overall CPU time of an IBM RISC System 6000/520 is reduced from about 312
hours to about 91 hours, that is from more than 13 days to less than 4 days. Finally,
in Figure 1 we show, in the case of the binary stars AT CAM (q > 1), how fkmin
decreases with the number of function evaluations, when this number is larger than
5000. This figure confirms that the improved algorithm performs like the basic
algorithm at the initial iterations, corresponding to the global search phase, and is
much faster in the final iterations, corresponding to the local search phase. Similar
behaviours are observed for all binary stars of Table II.

Appendix: Test Functions

1. Extended Rosenbrock [20]

f(x) =
n�1X
i=1

f(xi � 1)2 + 100(x2
i � xi+1)

2
g;

x� = [1; 1; . . . ; 1]T f(x�) = 0:

The region of interest is �1000 � xi � 1000 i = 1; . . . ; n.
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Figure 1. Comparison between the basic and the improved Price’s algorithm on AT CAM
(q > 1) data

2. Meyer and Roth [20]

f(x1; x2; x3) =
mX
i=1

fYi(t; v;x) � yig
2;

in which

Yi(t; v;x) =
x1x3ti

(1 + x1ti + x2vi)
;

and the ti, vi and the yi are given in the following table.
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i ti vi yi

1 1.0 1.0 0.126
2 2.0 1.0 0.219
3 1.0 2.0 0.076
4 2.0 2.0 0.126
5 0.1 0.0 0.186

For this problem m = 5 and n = 3
x� = [3:13; 15:16; 0:78]T f(x�) = 0:4� 10�4:

The region of interest is �10 � xi � 10 i = 1; 2; 3.
3. Fletcher and Powell [20]

f(x1; x2; x3) = 100f(x3 � 10�)2 + (r � 1)2
g+ x2

3;

where
r = j(x2

1 + x2
2)

1=2
j

and

� =

8>><
>>:

1
2�

tan�1 x2

x1
; (x1 > 0)

1
2�

tan�1 x2

x1
+

1
2
; (x1 < 0)

x� = [1; 0; 0]T f(x�) = 0:
The region of interest is �10 � xi � 10 i = 1; 2; 3.

4. Miele and Cantrell [20]
f(x1; x2) = (exp(x1)� x2)

4 + 100(x2 � x3)
6 + ftan(x3 � x4)g

4 + x8
1;

x� = [0; 1; 1; 1]T f(x�) = 0:
The region of interest is �10 � xi � 10 i = 1; 2; 3; 4:

5. Wood’s function, quoted by Colville [20]
f(x) = 100(x2

1 � x2)
2 + (x1 � 1)2 + (x3 � 1)2 + 90(x2

3 � x4)
2

+10:1f(x2 � 1)2 + (x4 � 1)2
g+ 19:8(x2 � 1)(x4 � 1);

x� = [1; 1; 1; 1]T f(x�) = 0:
The region of interest is �10 � xi � 10 i = 1; 2; 3; 4:

6. Six hump camel back function [2]
f(x1; x2) = (4� 2:1x2

1 + x4
1=3)x2

1 + x1x2 + (�4 + 4x2
2)x

2
2;

f� ' �1:0316285:
The region of interest is �2:5 � x1 � 2:5 � 1:5 � x2 � 1:5.
This function exhibits six local minimizers, two of which are also global.

7. 10n local minima [21]

f(x) = (�=n)f10 sin2(�x1) +
n�1X
i=1

[(xi � 1)2(1 + 10 sin2(�xi+1))]

+(xn � 1)2
g;

f� = 0:
The region of interest is �10 � xi � 10 i = 1; . . . ; n.
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This function has roughly 10n local minimizers and a unique global minimizer
located at x�i = 1; i = 1; . . . ; n.

8. 15n local minima [21]

f(x) = (1=10)fsin2(3�x1) +
n�1X
i=1

[(xi � 1)2(1 + 10 sin2(3�xi+1))]g

+(1=10)(xn � 1)2[1 + sin2(2�xn)];

f� = 0:

The region of interest is �10 � xi � 10 i = 1; . . . ; n.
This function has roughly 15n local minimizers and a unique global minimizer
located at x�i = 1; i = 1; . . . ; n.

9. Shekel’s family [2]

f(x) = �

mX
i=1

1
(x� ai)T (x� ai) + ci

:

We studied this function with m = 5;m = 7;m = 10 and n = 4.
The values of ai = (ai1; . . . ; ain)T and ci > 0 (for i = 1; . . . ;m) are given in
the following table:

i ai1 ai2 ai3 ai4 ci

1 4. 4. 4. 4. .1
2 1. 1. 1. 1. .2
3 8. 8. 8. 8. .2
4 6. 6. 6. 6. .4
5 3. 7. 3. 7. .4

6 2. 9. 2. 9. .6
7 5. 5. 3. 3. .3

8 8. 1. 8. 1. .7
9 6. 2. 6. 2. .5

10 7. 3.6 7. 3.6 .5

The region of interest is 0 � xj � 10 j = 1; . . . ; n.
This function has m minima in positions ai with levels ci.

10. Hartman’s family [2]

f(x) = �

mX
i=1

ci exp

0
@� nX

j=1

aij(xj � pij)
2

1
A :

We studied this function with m = 4; n = 3 and n = 6.
The values of ai = (ai1; . . . ; ain)T ; pi = (pi1; . . . ; pin)T and ci > 0 (for
i = 1; . . . ; n) are given in the following tables:
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i ai1 ai2 ai3 ci pi1 pi2 pi3

1 3. 10. 30. 1. .3689 .1170 .2673
2 .1 10. 35. 1.2 .4699 .4387 .7470
3 3. 10. 30. 3. .1091 .8732 .5547
4 .1 10. 35. 3.2 .03815 .5743 .8828

i ai1 ai2 ai3 ai4 ai5 ai6 ci

1 10. 3. 17. 3.5 1.7 8. 1.
2 .05 10. 17. .1 8. 14. 1.2
3 3. 3.5 1.7 10. 17. 8. 3.
4 17. 8. .05 10. .1 14. 3.2

i pi1 pi2 pi3 pi4 pi5 pi6

1 .1312 .1696 .5569 .0124 .8283 .5886
2 .2329 .4135 .8307 .3736 .1004 .9991
3 .2348 .1451 .3522 .2883 .3047 .6650
4 .4047 .8828 .8732 .5743 .1091 .0381

The region of interest is 0 � xj � 1 j = 1; . . . ; n.
This function has m minima in positions pi with levels ci.

11. Goldstein and Price [2]
f(x) = [1+(x1+x2+1)2(19� 14x1+3x2

1 � 14x2+6x1x2+3x2
2)]

[30+(2x1 � 3x2)
2(18� 32x1+12x2

1+48x2 � 36x1x2+27x2
2)];

x� = [0;�1]T f(x�) = 3:
The region of interest is �2 � xj � 2 j = 1; 2:

12. Exponential [22]

f(x) = exp

 
�0:5

mX
i=1

x2
i

!
;

f� = �1

The region of interest is �1 � xi � 1 i = 1; . . . ;m:
13. Cosine mixture [22]

f(x) = 0:1
mX
i=1

cos(5�xi)�
mX
i=1

x2
i ;

f� = �2 if m = 2 and f� = �4 if m = 4:

The region of interest is �1 � xi � 1 i = 1; . . . ;m.
14. Poissonian pulse-train likelihood [22]

f(x) =

pX
i=1

(��i(x) + ni log(�i(x));
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where

�i(x) = 2

"
1 + 2:5 exp

(
�0:5

�
i� x1

x2

�2
)#

+ 3

and p = 21 and the values of ni, i = 1; . . . ; 21 are: 5, 2, 4, 2, 7, 2, 4, 5, 4, 4,
15, 10, 8, 15, 5, 6, 3, 4, 5, 2, 6.

f� ' �95:28:
The region of interest is 1 � x1 � 21; 1 � x2 � 8.

15. Cauchy likelihood [22]

f(x) = �

nX
i=1

[log(�) + log(1 + (yi � x)2)]:

We studied this function with n = 4; n = 10 and n = 25.
The values of yi are given in the following table:

n = 4 3 7 12 17

n = 10 2 5 7 8 11 15 17 21 23 26

n = 25 4.1 7.7 17.5 31.4 32.7 92.4 115.3 118.3 119.0 129.6
198.6 200.7 242.5 255.0 274.7 303.8 334.1 430.0 489.1
703.4 978.0 1656.0 1697.8 2745.6

The region of interest is y1 � x � yn.
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